CDQ分治
分成四个方向讨论最小值,把所有坐标全部离线处理。
把左边按x轴排序,保证x的顺序,然后树状数组维护每个方向需要的最值。。
然后CDQ分治。。必须手动撤销树状数组的修改,保证分治的时间复杂度。
#include#define INF 0x3f3f3f3f#define full(a, b) memset(a, b, sizeof a)#define FAST_IO ios::sync_with_stdio(false), cin.tie(0), cout.tie(0)using namespace std;typedef long long ll;inline int lowbit(int x){ return x & (-x); }inline int read(){ int X = 0, w = 0; char ch = 0; while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); } while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar(); return w ? -X : X;}inline int gcd(int a, int b){ return b ? gcd(b, a % b) : a; }inline int lcm(int a, int b){ return a / gcd(a, b) * b; }template inline T max(T x, T y, T z){ return max(max(x, y), z); }template inline T min(T x, T y, T z){ return min(min(x, y), z); }template inline A fpow(A x, B p, C lyd){ A ans = 1; for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd; return ans;}const int N = 1000005;int n, m, tot, t[N], k, ans[N];struct rec { int x, y, z; bool operator < (const rec &rhs) const { return x < rhs.x; }}a[N], b[N];inline void add(int index, int val){ for(; index < tot; index += lowbit(index)) t[index] = max(t[index], val);}inline int query(int index){ int ret = -(1 << 30); for(; index; index -= lowbit(index)) ret = max(ret, t[index]); return ret;}inline void calc1(){ for(int i = 1; i <= k; i ++){ int y = b[i].y; int temp = b[i].x + b[i].y; if(a[b[i].z].z == 1) add(y, temp); else ans[b[i].z] = min(ans[b[i].z], abs(temp - query(y))); } for(int i = 1; i <= k; i ++){ int y = b[i].y; if(a[b[i].z].z == 1){ for(int j = y; j < tot; j += lowbit(j)) t[j] = -(1 << 30); } }}inline void calc2(){ for(int i = 1; i <= k; i ++){ int y = b[i].y; int temp = b[i].x - b[i].y; if(a[b[i].z].z == 1) add(tot - y, temp); else ans[b[i].z] = min(ans[b[i].z], abs(temp - query(tot - y))); } for(int i = 1; i <= k; i ++){ int y = b[i].y; if(a[b[i].z].z == 1){ for(int j = tot - y; j < tot; j += lowbit(j)) t[j] = -(1 << 30); } }}inline void calc3(){ for(int i = k; i >= 1; i --){ int y = b[i].y; int temp = -b[i].x - b[i].y; if(a[b[i].z].z == 1) add(tot - y, temp); else ans[b[i].z] = min(ans[b[i].z], abs(temp - query(tot - y))); } for(int i = k; i >= 1; i --){ int y = b[i].y; if(a[b[i].z].z == 1){ for(int j = tot - y; j < tot; j += lowbit(j)) t[j] = -(1 << 30); } }}inline void calc4(){ for(int i = k; i >= 1; i --){ int y = b[i].y; int temp = -b[i].x + b[i].y; if(a[b[i].z].z == 1) add(y, temp); else ans[b[i].z] = min(ans[b[i].z], abs(temp - query(y))); } for(int i = k; i >= 1; i --){ int y = b[i].y; if(a[b[i].z].z == 1){ for(int j = y; j < tot; j += lowbit(j)) t[j] = -(1 << 30); } }}void cdqDiv(int l, int r){ if(l == r) return; int mid = (l + r) >> 1; cdqDiv(l, mid), cdqDiv(mid + 1, r); k = 0; for(int i = l; i <= r; i ++){ if((i <= mid && a[i].z == 1) || (i > mid && a[i].z == 2)) b[++k] = a[i], b[k].z = i; } sort(b + 1, b + k + 1); calc1(), calc2(); calc3(), calc4();}int main(){ full(t, 0xcf), full(ans, INF); n = read(), m = read(); m += n; for(int i = 1; i <= n; i ++){ a[i].x = read(), a[i].y = read() + 1, a[i].z = 1; } for(int i = n + 1; i <= m; i ++){ a[i].z = read(), a[i].x = read(), a[i].y = read() + 1; } for(int i = 1; i <= m; i ++) tot = max(tot, a[i].y); tot ++; cdqDiv(1, m); for(int i = 1; i <= m; i ++){ if(a[i].z == 2) printf("%d\n", ans[i]); } return 0;}